If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16x^2+44x+50=0
a = -16; b = 44; c = +50;
Δ = b2-4ac
Δ = 442-4·(-16)·50
Δ = 5136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5136}=\sqrt{16*321}=\sqrt{16}*\sqrt{321}=4\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-4\sqrt{321}}{2*-16}=\frac{-44-4\sqrt{321}}{-32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+4\sqrt{321}}{2*-16}=\frac{-44+4\sqrt{321}}{-32} $
| N-7n=8-5n | | 6(x+2)+2x=5x+2+8x | | 2(x=3)=x=10 | | 220-u=151 | | 2(3x-6)=-(12-6) | | 1/10+1/40=1/x | | -16-6x-6+2x=x+8 | | 6x=3=-9 | | (2(40)+y=(120) | | Y=10x50 | | 93-x=290 | | -5x^2+5x-58=0 | | 20k+17=24k | | (2w-1)w=45 | | 3(2n+3)(n-4)=0 | | -5=3k-8 | | a-4.5=2.5 | | 1-4x=15-4x-4x | | (2x+x)=120 | | x+5/6+5/7+4/9=377/126 | | -1/5(25x+5)-5=4 | | 120=(2x+x) | | 223=-x+131 | | 7x+13x-8=4(5x+4) | | -20y+4=0 | | 83=-y+161 | | -x^2+x-17=0 | | -33=4(9f+5) | | 42x+32-12x=-28 | | 193-v=250 | | 9=3n^2 | | 182-v=Q |